Valley-polarized quantum anomalous Hall effect in van der Waals heterostructures based on monolayer jacutingaite family materials

Apr 1, 2023·
Xudong Zhu
Xudong Zhu
,
ET AL
,
Zhenhua Qiao
· 1 min read
Abstract
We numerically study the general valley polarization and anomalous Hall effect in van der Waals (vdW) heterostructures based on monolayer jacutingaite family materials Pt2AX3 (A = Hg, Cd, Zn; X = S, Se, Te). We perform a systematic study on the atomic, electronic, and topological properties of vdW heterostructures composed of monolayer Pt2AX3 and two-dimensional ferromagnetic insulators. We show that four kinds of vdW heterostructures exhibit valley-polarized quantum anomalous Hall phase, i.e., Pt2HgS3/NiBr2, Pt2HgSe3/CoBr2, Pt2HgSe3/NiBr2, and Pt2ZnS3/CoBr2, with a maximum valley splitting of 134.2 meV in Pt2HgSe3/NiBr2 and sizable global band gap of 58.8 meV in Pt2HgS3/NiBr2. Our findings demonstrate an ideal platform to implement applications on topological valleytronics.
Type
Publication
Frontiers of Physics
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Add the publication’s full text or supplementary notes here. You can use rich formatting such as including code, math, and images.